Module pipelines.rj_cor.meteorologia.precipitacao_alertario.constants
Constant values for the rj_cor.meteorologia.precipitacao_alertario project
Classes
class constants (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
Constant values for the precipitacao_alertario project The constants for actual values are on rain_dashboard_constants file
Expand source code
class constants(Enum): # pylint: disable=c0103 """ Constant values for the precipitacao_alertario project The constants for actual values are on rain_dashboard_constants file """ DATASET_ID_PLUVIOMETRIC = "clima_pluviometro" TABLE_ID_PLUVIOMETRIC = "taxa_precipitacao_alertario_5min" TABLE_ID_PLUVIOMETRIC_OLD_API = "taxa_precipitacao_alertario" DATASET_ID_METEOROLOGICAL = "clima_estacao_meteorologica" TABLE_ID_METEOROLOGICAL = "meteorologia_alertario" RAIN_DASHBOARD_LAST_30MIN_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_30min_rain", "redis_update_key": "data_last_30min_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_30min acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL ) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 2*0 AND qnt_chuva <= 2*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 2*1.25 AND qnt_chuva <= 2*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 2*6.25 AND qnt_chuva <= 2*12.5 THEN 'chuva forte' WHEN qnt_chuva > 2*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 2*0 AND qnt_chuva <= 2*1.25 THEN '#DAECFB' WHEN qnt_chuva > 2*1.25 AND qnt_chuva <= 2*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 2*6.25 AND qnt_chuva <= 2*12.5 THEN '#77A9D5' WHEN qnt_chuva > 2*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_60MIN_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_60min_rain", "redis_update_key": "data_last_60min_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_1h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 4*0 AND qnt_chuva <= 4*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 4*1.25 AND qnt_chuva <= 4*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 4*6.25 AND qnt_chuva <= 4*12.5 THEN 'chuva forte' WHEN qnt_chuva > 4*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 4*0 AND qnt_chuva <= 4*1.25 THEN '#DAECFB' WHEN qnt_chuva > 4*1.25 AND qnt_chuva <= 4*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 4*6.25 AND qnt_chuva <= 4*12.5 THEN '#77A9D5' WHEN qnt_chuva > 4*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_2H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_120min_rain", "redis_update_key": "data_last_120min_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_2h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL ) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, COALESCE(qnt_chuva, 0) chuva_15min, estacoes, CASE WHEN qnt_chuva > 8*0 AND qnt_chuva <= 8*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 8*1.25 AND qnt_chuva <= 8*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 8*6.25 AND qnt_chuva <= 8*12.5 THEN 'chuva forte' WHEN qnt_chuva > 8*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 8*0 AND qnt_chuva <= 8*1.25 THEN '#DAECFB' WHEN qnt_chuva > 8*1.25 AND qnt_chuva <= 8*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 8*6.25 AND qnt_chuva <= 8*12.5 THEN '#77A9D5' WHEN qnt_chuva > 8*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_3H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_3h_rain", "redis_update_key": "data_last_3h_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_3h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL ) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 12*0 AND qnt_chuva <= 12*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 12*1.25 AND qnt_chuva <= 12*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 12*6.25 AND qnt_chuva <= 12*12.5 THEN 'chuva forte' WHEN qnt_chuva > 12*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 12*0 AND qnt_chuva <= 12*1.25 THEN '#DAECFB' WHEN qnt_chuva > 12*1.25 AND qnt_chuva <= 12*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 12*6.25 AND qnt_chuva <= 12*12.5 THEN '#77A9D5' WHEN qnt_chuva > 12*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_6H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_6h_rain", "redis_update_key": "data_last_6h_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_6h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL ) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 24*0 AND qnt_chuva <= 24*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 24*1.25 AND qnt_chuva <= 24*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 24*6.25 AND qnt_chuva <= 24*12.5 THEN 'chuva forte' WHEN qnt_chuva > 24*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 24*0 AND qnt_chuva <= 24*1.25 THEN '#DAECFB' WHEN qnt_chuva > 24*1.25 AND qnt_chuva <= 24*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 24*6.25 AND qnt_chuva <= 24*12.5 THEN '#77A9D5' WHEN qnt_chuva > 24*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_12H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_12h_rain", "redis_update_key": "data_last_12h_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_12h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 48*0 AND qnt_chuva <= 48*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 48*1.25 AND qnt_chuva <= 48*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 48*6.25 AND qnt_chuva <= 48*12.5 THEN 'chuva forte' WHEN qnt_chuva > 48*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 48*0 AND qnt_chuva <= 48*1.25 THEN '#DAECFB' WHEN qnt_chuva > 48*1.25 AND qnt_chuva <= 48*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 48*6.25 AND qnt_chuva <= 48*12.5 THEN '#77A9D5' WHEN qnt_chuva > 48*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_24H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_24h_rain", "redis_update_key": "data_last_24h_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_24h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 24*4*0 AND qnt_chuva <= 24*4*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 24*4*1.25 AND qnt_chuva <= 24*4*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 24*4*6.25 AND qnt_chuva <= 24*4*12.5 THEN 'chuva forte' WHEN qnt_chuva > 24*4*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 24*4*0 AND qnt_chuva <= 24*4*1.25 THEN '#DAECFB' WHEN qnt_chuva > 24*4*1.25 AND qnt_chuva <= 24*4*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 24*4*6.25 AND qnt_chuva <= 24*4*12.5 THEN '#77A9D5' WHEN qnt_chuva > 24*4*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, } RAIN_DASHBOARD_LAST_96H_FLOW_SCHEDULE_PARAMETERS = { "redis_data_key": "data_last_96h_rain", "redis_update_key": "data_last_96h_rain_update", "query_data": """ WITH alertario AS ( -- seleciona a última medição do alertario de cada estação nos últimos 30min SELECT id_estacao, CAST(acumulado_chuva AS FLOAT64) acumulado_chuva, CURRENT_DATE('America/Sao_Paulo') as data, data_update FROM ( SELECT id_estacao, acumulado_chuva_96h acumulado_chuva, DATETIME(data_medicao) AS data_update, ROW_NUMBER() OVER ( PARTITION BY id_estacao ORDER BY DATETIME(data_medicao) DESC ) AS row_num FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) )AS a WHERE a.row_num = 1 ), last_measurements AS ( (SELECT id_estacao, data_update, "alertario" AS sistema, acumulado_chuva, FROM alertario WHERE acumulado_chuva IS NOT NULL) ), -- choosing the neighborhood that shares the most intersection with the given H3 ID intersected_areas AS ( SELECT h3_grid.id, bairros.nome AS bairro, ST_CENTROID(h3_grid.geometry) AS geom, ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) AS intersection_area, ROW_NUMBER() OVER (PARTITION BY h3_grid.id ORDER BY ST_AREA(ST_INTERSECTION(bairros.geometry, h3_grid.geometry)) DESC) AS row_num FROM `rj-cor.dados_mestres.h3_grid_res8` h3_grid LEFT JOIN `rj-cor.dados_mestres.bairro` AS bairros ON ST_INTERSECTS(bairros.geometry, h3_grid.geometry) WHERE NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.35167114973923 -23.03719187431942, -43.21742224531541 -23.11411703410819, -43.05787930227852 -23.08560586153892, -43.13797293161925 -22.9854505090441, -43.24908435505957 -23.01309491285712, -43.29357259322761 -23.02302500142027, -43.35372293867113 -23.02286949608791, -43.35167114973923 -23.03719187431942))'), h3_grid.geometry) AND NOT ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((-43.17255470033881 -22.80357287766821, -43.16164114820394 -22.8246787848653, -43.1435175784006 -22.83820699694974, -43.08831858222521 -22.79901386772875, -43.09812065965735 -22.76990583135868, -43.11917632397501 -22.77502040608505, -43.12252626904735 -22.74275730775724, -43.13510053525226 -22.7443347361711, -43.1568784870256 -22.79110122556994, -43.17255470033881 -22.80357287766821))'), h3_grid.geometry) AND h3_grid.id not in ("88a8a06a31fffff", "88a8a069b5fffff", "88a8a3d357fffff", "88a8a3d355fffff", "88a8a068adfffff", "88a8a06991fffff", "88a8a06999fffff") ), h3_chuvas AS ( -- calcula qnt de chuva para cada h3 SELECT h3.*, lm.id_estacao, lm.acumulado_chuva, lm.acumulado_chuva/power(h3.dist,5) AS p1_15min, 1/power(h3.dist,5) AS inv_dist FROM ( WITH centroid_h3 AS ( SELECT * FROM intersected_areas WHERE row_num = 1 ), estacoes_pluviometricas AS ( (SELECT id_estacao AS id, estacao, "alertario" AS sistema, ST_GEOGPOINT(CAST(longitude AS FLOAT64), CAST(latitude AS FLOAT64)) AS geom FROM `rj-cor.clima_pluviometro.estacoes_alertario`) ), estacoes_mais_proximas AS ( SELECT AS VALUE s FROM ( SELECT ARRAY_AGG( STRUCT<id_h3 STRING, id_estacao STRING, estacao STRING, bairro STRING, dist FLOAT64, sistema STRING>( a.id, b.id, b.estacao, a.bairro, ST_DISTANCE(a.geom, b.geom), b.sistema ) ORDER BY ST_DISTANCE(a.geom, b.geom) ) AS ar FROM (SELECT id, geom, bairro FROM centroid_h3) a CROSS JOIN( SELECT id, estacao, sistema, geom FROM estacoes_pluviometricas WHERE geom is not null ) b WHERE a.id <> b.id GROUP BY a.id ) ab CROSS JOIN UNNEST(ab.ar) s ) SELECT *, row_number() OVER (PARTITION BY id_h3 ORDER BY dist) AS ranking FROM estacoes_mais_proximas ORDER BY id_h3, ranking) h3 LEFT JOIN last_measurements lm ON lm.id_estacao=h3.id_estacao AND lm.sistema=h3.sistema ), final_table AS ( -- calcula média de chuva para as 3 estações mais próximas SELECT id_h3, bairro, cast(round(CAST(sum(p1_15min)/sum(inv_dist) AS DECIMAL),2) AS decimal) AS qnt_chuva, STRING_AGG(estacao ORDER BY estacao) estacoes FROM h3_chuvas GROUP BY id_h3, bairro ) SELECT final_table.id_h3, bairro, COALESCE(qnt_chuva, 0) quantidade, estacoes, CASE WHEN qnt_chuva > 4*96*0 AND qnt_chuva <= 4*96*1.25 THEN 'chuva fraca' WHEN qnt_chuva > 4*96*1.25 AND qnt_chuva <= 4*96*6.25 THEN 'chuva moderada' WHEN qnt_chuva > 4*96*6.25 AND qnt_chuva <= 4*96*12.5 THEN 'chuva forte' WHEN qnt_chuva > 4*96*12.5 THEN 'chuva muito forte' ELSE 'sem chuva' END AS status, CASE WHEN qnt_chuva > 4*96*0 AND qnt_chuva <= 4*96*1.25 THEN '#DAECFB' WHEN qnt_chuva > 4*96*1.25 AND qnt_chuva <= 4*96*6.25 THEN '#A9CBE8' WHEN qnt_chuva > 4*96*6.25 AND qnt_chuva <= 4*96*12.5 THEN '#77A9D5' WHEN qnt_chuva > 4*96*12.5 THEN '#125999' ELSE '#ffffff' END AS color FROM final_table """, "query_update": """ SELECT MAX( DATETIME(data_medicao) ) AS last_update FROM `rj-cor.clima_pluviometro_staging.taxa_precipitacao_alertario_5min` WHERE data_medicao >= CAST(TIME_SUB(CURRENT_TIME('America/Sao_Paulo'), INTERVAL 30 MINUTE) AS STRING) AND data_particao >= CAST(DATE_SUB(CURRENT_DATE('America/Sao_Paulo'), INTERVAL 1 DAY) AS STRING) """, }
Ancestors
- enum.Enum
Class variables
var DATASET_ID_METEOROLOGICAL
var DATASET_ID_PLUVIOMETRIC
var RAIN_DASHBOARD_LAST_12H_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_24H_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_2H_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_30MIN_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_3H_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_60MIN_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_6H_FLOW_SCHEDULE_PARAMETERS
var RAIN_DASHBOARD_LAST_96H_FLOW_SCHEDULE_PARAMETERS
var TABLE_ID_METEOROLOGICAL
var TABLE_ID_PLUVIOMETRIC
var TABLE_ID_PLUVIOMETRIC_OLD_API